Widget HTML Atas

Pembahasan Materi dan Soal Persamaan Lingkaran

Pembahasan Materi dan Soal Persamaan Lingkaran. Admin akan menjelaskan tentang materi kelas 11 matematika tentang Persamaan Lingkaran. di postingan ini kkaktri akan membahas rumus-rumus dasar Persamaan Lingkaran . persamaan lingkaran yang berpusat di (0,0) dan juga persamaan lingkaran dengan pusat (a,b). 

Pembahasan Materi dan Soal Persamaan Lingkaran

Persamaan lingkaran dengan pusat (0, 0) dan jari-jari r adalah

x2 + y2 = r2

Persamaan lingkaran dengan pusat (a, b) dan jari-jari r adalah
(x - a)2 + (y - b)2 = r2

Persamaan diatas sering disebut dengan bentuk baku persamaan lingkaran.

Contoh 1
Tentukan pusat dan jari-jari lingkaran berikut!
a.  x2 + y2 = 9

    Jawab :
    P(0,0)
    r = √9 = 3

b.  4x2 + 4y2 = 100

    Jawab :
    4x2 + 4y2 = 100  ⇔  x2 + y2 = 25
    P(0, 0)
    r = √25 = 5

c.  (x − 1)2 + (y − 2)2 = 12

    Jawab :
    P(1, 2)
    r = √12 = 2√3

d.  (x + 3)2 + (y − 4)2 = 16

     Jawab :
     P(−3, 4)
     r = √16 = 4



Contoh 2
Tentukan persamaan lingkaran jika diketahui :
a.  P(0, 0) ; r = 7

    Jawab :
    x2 + y2 = 72
    x2 + y2 = 49

b.  P(2, −2) ; r = 3√2

    Jawab :
    (x − 2)2 + (y + 2)2 = (3√2)2
    (x − 2)2 + (y + 2)2 = 18


Selain dalam bentuk baku diatas, persamaan lingkaran dapat pula dinyatakan dalam bentuk umum sebagai berikut :
x2 + y2 + Ax + By + C= 0

dengan pusat dan jari-jarinya adalah
\(\mathrm{P=\left ( -\frac{A}{2},\;-\frac{B}{2} \right )}\)
\(\mathrm{r=\sqrt{\frac{A^{2}}{4}+\frac{B^{2}}{4}-C}}\)

Contoh 3
Tentukan bentuk umum persamaan lingkaran yang berpusat di P(−1, 3) dengan jari-jari 7 !

Jawab :
(x + 1)2 + (y − 3)2 = 72
x2 + 2x + 1 + y2 − 6y + 9 = 49
x2 + y2 + 2x − 6y − 39 = 0

Contoh 4
Tentukan pusat dan jari-jari lingkaran \(\mathrm{x^{2}+y^{2}-6x+2y-15=0}\) !

Jawab :
A = −6 ; B = 2 ; C = −15

Pusat lingkaran :
P\(\mathrm{(-\frac{A}{2},-\frac{B}{2})}\)
P\(\mathrm{(-\frac{(-6)}{2},-\frac{2}{2})}\) ⇔ P(3, −1)

Jari-jari lingkaran :
r = \(\mathrm{\sqrt{\frac{A^{2}}{4}+\frac{B^{2}}{4}-C}}\)
r = \(\mathrm{\sqrt{\frac{(-6)^{2}}{4}+\frac{2^{2}}{4}-(-15)}}\) = 5

Latihan Soal Persamaan Lingkaran

Latihan 1
Persamaan lingkaran yang berpusat di (−2, 1) dan melalui titik (1, 5) adalah...

Jawab :


Persamaan lingkaran dengan pusat (−2, 1) dan jari-jari r adalah :
(x + 2)2 + (y − 1)2 = r2

Lingkaran melalui titik (1, 5) sehingga :
(1 + 2)2 + (5 − 1)2 = r2
25 = r2

Jadi, persamaan lingkaran :
(x + 2)2 + (y − 1)2 = 25

atau dalam bentuk umum :
x2 + y2 + 4x − 2y − 20 = 0


Latihan 2
Jika diameter suatu lingkaran adalah AB dengan titik A(4, 5) dan B(0, −3), tentukan persamaan lingkaran tersebut !

Jawab :
gambar 2 Pembahasan Materi dan Soal Persamaan Lingkaran


Diameter adalah jarak titik A ke titik B :
d = AB = \(\mathrm{\sqrt{(4-0)^{2}+(5-(-3))^{2}}}\) = \(\sqrt{80}\)

Jari-jari adalah setengah dari diameter :
r = \(\frac{1}{2}\)\(\sqrt{80}\)

Pusat lingkaran adalah titik tengah AB :
P\(\left ( \frac{4+0}{2},\frac{5+(-3)}{2} \right )\) ⇔ P(2, 1)

Jadi, persamaan lingkaran :
(x − 2)2 + (y − 1)2 = \(\left (\frac{1}{2}\sqrt{80}  \right )^{2}\)
(x − 2)2 + (y − 1)2 = 20

atau dalam bentuk umum :
x2 + y2  4x − 2y − 15 = 0


Latihan 3
Persamaan lingkaran yang berpusat di (−2, 3) dan menyinggung garis \(\mathrm{x+2y+6=0}\) adalah...

Jawab :
gambar 3 Pembahasan Materi dan Soal Persamaan Lingkaran


INGAT :
Jarak titik (x1, x2) ke garis \(\mathrm{ax+by+c=0}\) adalah
d = \(\mathrm{\left | \frac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right |}\)

Jari-jari adalah jarak dari titik pusat (−2, 3) ke garis \(\mathrm{x+2y+6=0}\).
r = \(\mathrm{\left | \frac{1(-2)+2(3)+6}{\sqrt{1^{2}+2^{2}}} \right |}\) = 2\(\sqrt{5}\)

Jadi, persamaan lingkaran :
(x + 2)2 + (y − 3)2 = \(\left ( 2\sqrt{5}  \right )^{2}\)
(x + 2)2 + (y − 3)2 = 20

atau dalam bentuk umum :
x2 + y2 + 4x − 6y − 7 = 0


Latihan 4
Jika garis y = 2x + p menyinggung lingkaran \(\mathrm{x^{2}+y^{2}-6x-4y+8=0}\), tentukan nilai p !

Jawab :
gambar 4 Pembahasan materi dan Soal Persamaan Lingkaran


Substitusi y = 2x + p ke persamaan lingkaran :
x2 + y2 − 6x − 4y + 8 = 0
x2 + (2x + p)2 − 6x − 4(2x + p) + 8 = 0
5x2 + (4p − 14)x + p2 − 4p + 8 = 0

Garis menyinggung lingkaran, maka :
D = 0
b2 − 4ac = 0
(4p − 14)2 − 4.5.(p2 − 4p + 8) = 0
p2 + 8p − 9 = 0
(p + 9)(p − 1) = 0
p = −9 atau p = 1


Latihan 5
Tentukan persamaan lingkaran dengan pusat (3, 4) dan lingkaran tersebut
a. menyinggung sumbu-x
b. menyinggung sumbu-y

Jawab :
gambar 5 Pembahasan materi dan Soal Persamaan Lingkaran


a.  P(3, 4) dan menyinggung sumbu-x, maka
     r = 4

     Persamaan lingkaran :
     (x − 3)2 + (y − 4)2 = 42
     (x − 3)2 + (y − 4)2 = 16

     atau dalam bentuk umum :
     x2 + y2  6x − 8y + 9 = 0

b.  P(3, 4) dan menyinggung sumbu-y, maka
     r = 3

     Persamaan lingkaran :
     (x − 3)2 + (y − 4)2 = 32
     (x − 3)2 + (y − 4)2 = 9

     atau dalam bentuk umum :
     x2 + y2  6x − 8y + 16 = 0


Latihan 6
Tentukan persamaan lingkaran yang pusatnya terletak pada garis \(\mathrm{y=x+4}\) serta menyinggung sumbu-x negatif dan sumbu-y positif !

Jawab :
gambar 6 Pembahasan materi dan Soal Persamaan Lingkaran


Lingkaran menyinggung sumbu-x negatif dan sumbu-y positif, sehingga pusatnya dapat ditulis :
P(−a, b) dengan a = b.

Karena P(−a, b) terletak pada garis \(\mathrm{y=x+4}\) maka
b = −a + 4

Karena a = b maka
b = −a + 4
a = −a + 4
a = 2

Diperoleh a = b = 2

Sehingga pusat lingkaran tersebut adalah :
P(−a, b) ⇔ P(−2, 2)

Karena lingkaran menyinggung kedua sumbu, maka
r = |a| = |b| = 2

Jadi, persamaan lingkaran :
(x + 2)2 + (y − 2)2 = 22
(x + 2)2 + (y − 2)2 = 4

atau dalam bentuk umum :
x2 + y2 + 4x − 4y + 4 = 0

Demikianlah Pembahasan materi dan Soal Persamaan Lingkaran. semoga bermanfaat

Tidak ada komentar untuk "Pembahasan Materi dan Soal Persamaan Lingkaran"