Widget HTML Atas

Soal Uji Kemampuan Pertidaksamaan Rasional Secara Online

Soal Uji Kemampuan Pertidaksamaan Rasional Secara Online, berikut ini kkatri postingkan beberapa soal mengenai Latihan Online Pertidaksamaan Rasional yang dapat dijadikan untuk mengasah kemampuan kalian dalam menguasai mata pelajaran Pertidaksamaan Rasional Khususnya untuk Kelas 10 SMA. , selammat belajar.

Soal Uji Kemampuan Pertidaksamaan Rasional  Secara Online
Soal Matematika Online Pertidaksamaan Rasional
Petunjuk: Pilihlah jawaban yang menurut anda benar


1). Penyelesaian pertidaksamaan $\displaystyle\frac{8}{x-6}\geq 0$ adalah ....

A. $x\geq 6$
B. $x\leq 6$
C.  $x\gt 6$
D.  $x\lt 6$
E.  $x\gt 8$

2). Bilangan real $x$ yang memenuhi $\displaystyle\frac{6x-3}{x-4}\geq 0$ adalah ....

A.  $x\leq \frac{1}{2}$ atau $x\geq 4$
B.  $x\leq \frac{1}{2}$ atau $x\gt 4$
C.  $x\lt \frac{1}{2}$ atau $x\gt 4$
D.  $\frac{1}{2}\leq x\lt 4 $
E.  $\frac{1}{2}\leq x\leq 4$

3). Nilai $x$ yang memenuhi pertidaksamaan $\displaystyle\frac{(x-2)(2x+3)}{(x-6)(x+3)}\leq 0$ adalah ....

A.  $-3\lt x\leq -\frac{3}{2}$ atau $2\leq x\lt 6$
B.  $-3\leq x\leq -\frac{3}{2}$ atau $2\leq x\lt 6$
C.  $x\lt -2$ atau $2\leq x \leq 6$
D.  $x\lt -2$ atau $-\frac{3}{2}\leq x\leq 2$
E.  $-\frac{3}{2}\leq x\lt 2$ atau $x\gt 6$

4). Nilai $x$ yang memenuhi pertidaksamaan $\displaystyle\frac{x^2-x-2}{x-3}\geq 0$ adalah ....

A.  $x\leq 2$ atau $1\leq x\lt 3$
B.  $-2\lt x\leq 1$ atau $x\gt 3$
C.  $-1\leq x\leq 2$ atau $x\gt 3$
D.  $x\leq 1$ atau $2\leq x\lt 3$
E.  $-2\leq x\leq 1$ atau $x\gt 3$

5). Nilai $x$ yang memenuhi pertidaksamaan $\displaystyle\frac{7+2x}{x-1}\lt 1$ adalah ....

A.  $x\lt -8$
B.  $x\leq -8$
C.  $x\geq 1$
D.  $-8\lt x\lt 1$
E.  $-8\leq x\lt 1$

6). Penyelesaian pertidaksamaan $\displaystyle\frac{2x+5}{5x-2}+1\gt 0$ adalah ....

A.  $x\gt 2\tfrac{1}{2}$
B.  $-2\tfrac{1}{2}\lt x\lt \frac{2}{5}$
C.  $-\frac{3}{7}\lt x\lt \frac{2}{3}$
D.  $x\lt -2\tfrac{1}{2}$ atau $x\gt \frac{2}{5}$
E.  $x\lt -\frac{3}{7}$ atau $x\gt \frac{2}{5}$

7). Penyelesaian pertidaksamaan $\displaystyle\frac{3}{x-5}\lt\frac{-5}{x-3}$ adalah ....

A.  $3\lt x\lt 5$
B.  $4\tfrac{1}{4}\lt x\lt 5$
C.  $x\lt 3$ atau $4\tfrac{1}{4}\lt x\lt 5$
D.  $3\lt x\lt 4\tfrac{1}{4}$ atau $x\gt 5$
E.  $x\lt 3$ atau $x\gt 5$

8). Penyelesaian pertidaksamaan $\displaystyle\frac{4-x}{2x+3}\leq \frac{2x-5}{2x3}$ adalah ....

A.  $x\lt -\frac{3}{2}$ atau $x\geq 3$
B.  $x\leq -\frac{3}{2}$ atau $x\geq 3$
C.  $x\lt\frac{3}{2}$ atau $x\geq 3$
D.  $-\frac{3}{2}\lt x\leq 3$
E.  $-\frac{3}{2}\leq x\leq 3$

9). Pertidaksamaan $\displaystyle\frac{x^2-2x-3}{x-1}\geq 0$ mempunyai penyelesaian ....

A.  $x\geq 3$
B.  $x\geq 1$
C.  $-1\leq x\leq 1$ atau $x\gt 3$
D.  $-1\leq x\lt 1$ atau $x\geq 3$
E.  $-1\leq x\leq 1$ atau $x \geq 3$

10). Penyelesaian dari $\displaystyle\frac{x^2-3x-18}{(x-6)^2(x-2)}\lt 0$ adalah ....

A.  $-3\lt x\lt 6$
B.  $2\lt x\lt 6$ atau $x\lt -3$
C.  $-3\lt x\lt 2$
D.  $x\gt -3$
E.  $2\lt x\lt 6$

11). Penyelesaian pertidaksamaan $\displaystyle\frac{x^2-5x-4}{x+3}\gt 1$ adalah ....

A.  $-3\lt x \lt -1$ atau $-1\lt x\lt 7$
B.  $-3\lt x\lt -1$ atau $x\gt 7$
C.  $x\lt -3$ atau $x\gt 7$
D.  $x\lt -1$ atau $x\gt 7$
E.  $-1\lt x\lt 7$

12). Himpunan penyelesaian pertidaksamaan $\displaystyle\frac{(x-1)(2x+4)}{(x^2+4)}\lt 1$ adalah ....

A.  $x\gt 2$
B.  $x\gt -4$
C.  $x\lt 2$
D.  $x\gt -4$
E.  $-4\lt x\lt 2$

13). Jika $x^2-x-2>0$ dan $\displaystyle f(x)=\frac{(x-2)(x^2-x+3)}{x+1}$, maka untuk setiap nilai $x$ ....

A.  $f(x)\lt 0$
B.  $f(x)\gt 0$
C.  $-1\lt f(x)\lt 2$
D.  $0\lt f(x)\lt 2$
E.  $0\leq f(x) \lt 2$

14). Jika $x^2+3x-10\lt 0$ dan $\displaystyle f(x)=\frac{(x+5)(x^2-3x+3)}{x-2}$, maka untuk setiap nilai $x$ berlaku ....

A.  $f(x)\lt 0$
B.  $f(x)\gt 0$
C.  $-3\lt f(x)\lt 2$
D.  $-2\lt f(x)\lt 2$
E.  $1\lt f(x) \lt 4$

15). Himpunan penyelesaian pertidaksamaan $\displaystyle\frac{2x-6}{x^2-6x+5}\lt 0$ adalah ....

A.  $(1, 5)$
B.  $(5, \infty)$
C.  $(-\infty, 1)$
D.  $(-\infty, 1)\cup (3,5)$
E.  $(-\infty, 1)\cup(3,\infty)$
Demikianlah 15 butir Soal Uji KemampuanPertidaksamaan Rasional Secara Online, jika ada soal yang belum anda pahami, mari kita diskusikan di kolom komentar.

Tidak ada komentar untuk "Soal Uji Kemampuan Pertidaksamaan Rasional Secara Online"